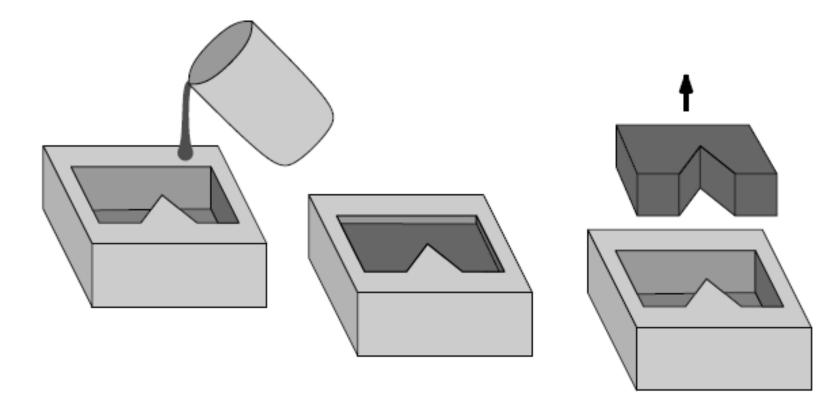
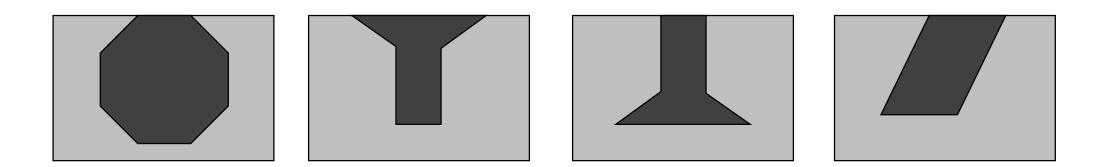
Polyhedron Casting and Backward Analysis

Casting



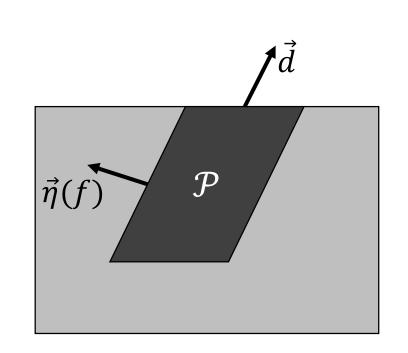
Casting

- Can we create a mold for any polyhedron?
- If a polyhedron is castable, does any mold fit?
- Given a legal mold, in what direction we need to translate? Upwards?

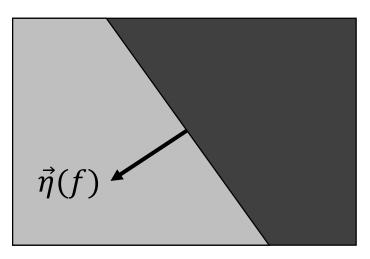


Definitions

- A polyhedron to cast ${\mathcal P}$
- Each face of \mathcal{P} , f, have a corresponding face in the mold \hat{f} .
- The (outward) normal of $f \vec{\eta}(f)$.
- Direction of translation \vec{d} .



• Which derections \vec{d} are valid?



- We want the angle between \vec{d} and $\vec{\eta}(f)$ to be at least 90°.
- For each face!

- Lemma: The polyhedron \mathcal{P} can be removed from its mold by a translation in direction \vec{d} if and only if \vec{d} makes an angle of at least 90° with $\vec{\eta}(f)$ for all f.
- Only if We have already seen.
- If The same reasoning holds for any collision, if \mathcal{P} is about f to collide with the mold at face \hat{f} then the angle between \vec{d} and $\vec{\eta}(f)$ is less than 90°.

P

• Let us write the directions as vectors –

$$\vec{d} = (d_x, d_y, 1) \longleftarrow \text{Why 1?}$$

$$\vec{\eta} = (\eta_x, \eta_y, \eta_z)$$

• Recall that $\vec{d} \cdot \vec{\eta} = \left| \vec{d} \right| \cdot \left| \vec{\eta} \right| \cdot \cos(\theta)$

- We want θ to be greater than 90° for all faces, that is: $\vec{d} \cdot \vec{\eta} \leq 0 \Rightarrow$ $d_x \eta_x + d_y \eta_y + \eta_z \leq 0$
- How do we solve it for all faces?

• We want θ to be greater than 90° for all faces, that is:

$$\vec{d} \cdot \vec{\eta} \le 0 \Rightarrow$$
$$d_x \eta_x + d_y \eta_y + \eta_z \le 0$$

- How do we solve it for all faces?
- Linear programing!
- Corollary: we can decide if a polyhedron is castable in $O(n^2)$ expected time.
 - Why $O(n^2)$?

Backward analysis

- What is the worst case time complexity of the following algorithm?
- And the expected time?

```
Algorithm PARANOIDMAXIMUM(A)
```

- 1. **if** $\operatorname{card}(A) = 1$
- 2. **then return** the unique element $x \in A$
- 3. **else** Pick a random element *x* from *A*.
- 4. $x' \leftarrow \text{PARANOIDMAXIMUM}(A \setminus \{x\})$
- 5. **if** $x \leq x'$
- 6. then return x'
- 7. **else** Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all card(A) 1 other elements of A.
- 8. return *x*

Backward analysis

• Worst case:

•
$$T(n) = T(n-1) + O(n) = O(n^2)$$

Algorithm PARANOIDMAXIMUM(*A*)

1. **if** card(A) = 1

4.

5.

6. 7.

8.

- 2. **then return** the unique element $x \in A$
- 3. **else** Pick a random element *x* from *A*.
 - $x' \leftarrow \text{PARANOIDMAXIMUM}(A \setminus \{x\})$
 - if $x \leq x'$
 - then return x'
 - else Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all card(A) 1 other elements of A.
 - return x

Backward analysis

• Expected time:

•
$$E(T(n)) = E(T(n-1)) + E(f(n))$$

$$= E(T(n-2)) + E(f(n)) + E(f(n-1))$$

$$\dots = \sum_{n}^{n} f(i)$$

$$= \frac{i-1}{i}O(1) + \frac{1}{i}O(i)$$

$$= O(n)$$

Algorithm PARANOIDMAXIMUM(A)
1. if card(A) = 1
2. then return the unique element $x \in A$
3. else Pick a random element x from A .
4. $x' \leftarrow PARANOIDMAXIMUM(A \setminus \{x\})$
5. if $x \leq x'$
6. then return x'

7.

8.

then return *x*′

return x

else Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all card(A) - 1other elements of A.